Web Application Security Testing. MnSCU IT Conference, April 26, 2005.


Countermeasures for OWASP Top Ten Vulnerabilities

These are just a few ideas for how to address the OWASP Top Ten. I strongly suggest you actually read the OWASP Top Ten, which also includes suggestions for how to protect yourself. Think of it as minimally required reading for developing secure web applications.

Unvalidated Input

· Do not trust user input, period. Input includes any part of an HTTP request (URL, query string, cookies, form fields, hidden fields, HTTP headers…) and data from outside your application (e.g. a database). Anything that crosses a trust boundary is not to be trusted.

· Validate input before using it. I put that down twice so you understand that it’s important.

· Do not try to filter out bad data. Instead, validate against a whitelist of patterns you expect:

· Data type (string, integer) 

· Allowed character set 

· Minimum and maximum length

· Do you allow nulls? 

· Required parameters

· Do you allow duplicates? 

· Numeric range

· Enumerated legal values

· Patterns (use regular expressions)

· Convert parameters to simplest form before filtering (canonicalization).

· Do not rely on client-side validation for security. Always validate on the server side, as well.

· Centralize validation rather than replicate across applications.

· HTML-encode and URL-encode output.

Broken Access Control

· Centralize access control.

· Use role-based access control.

Broken Authentication and Session Management

· Unpredictable, unique session tokens. You can probably rely on your platform

· Protect session tokens.

· Enforce a strong password policy.

· Do not store passwords as cleartext. Instead, store a hash of each password with a unique salt (e.g. use MD5 or SHA-1).

· Use secure password change controls.

· Prevent caching of authentication pages.

· Re-authenticate users when they are doing account management (e.g. changing a password).

Cross-Site Scripting (XSS) Flaws

· Validate input. If you don’t expect HTML in a phone number field, don’t allow it.

· Escape output (HTML-encode).

· Canonicalize input.

Buffer Overflow

· Use languages that manage memory for you.

· Validate input. Are you getting the idea that this is a Good Thing To Do?

· Minimize use of subsystems (database, shell, system commands, sendmail).

· Make sure you validate data before you pass it to subsystems. At the very least, check for input size.

Injection Flaws

· Run database with minimal privileges.

· Access database with minimal privileges.

· Validate input and rigorously check data.

· Use prepared statements (a.k.a. parameterized queries).

· Check output from subsystems to ensure that what you expected to happen did.

Improper Error Handling

· Use a standardized, documented approach to error handling throughout and across applications.

· Do not display application errors to user. Just a minimal “something went wrong” is enough. No stack traces, database dumps, etc.

· Log detailed error messages.

· Do not log private data.

· Use an intrusion detection system.

· Deny access until granted, not the other way around.

Insecure Storage

· If you’re storing sensitive or personal/confidential data, sit down and have a good, long think about whether you really need to. Understand your risks and responsibilities.

· If you really need to store that data, make sure it’s on a secured system (not, for example, in a database on your LAN).

· Encrypt sensitive/critical data, using proven encryption methods (not home-grown algorithms).

· Protect your encryption keys.

· If you need to store credit card numbers, don’t. Seriously.

· If you’re using encryption, be sure you understand it. Misconfigured or misapplied encryption is a common flaw.

· Store hashed passwords, not as cleartext.

Denial of Service

· Do load testing (JMeter).

· Minimize expensive operations. For instance, try not to hit the database 37 times for every page.

· Cache database queries and results where appropriate.

· Don’t store data you don’t need in session.

· Prevent more than one user session per authenticated user.

· Use load balancing.

· Use planned, centralized, and documented error handling.

· Use a throttling application such as mod_throttle.

Insecure Configuration Management

· Developers need to work closely with system administrators. Remember, web applications are part of your security perimeter.

· Document secure configuration, keep up to date and review.

· Use hardening guidelines.

· Log data that is useful for monitoring and incident response.

· Eliminate unnecessary backup or temporary files.

· Watch for improper permissions.

· Test SSL configuration.

· Start planning deployment early and include details in your designs.

Handouts archived at http://webmasters.mnscu.edu/security/

